

The most advanced Shepherd powered by U-pilot extend its capabilities beyond the limits of an usual model aircraft. Mixing the latest composites materials with the vanguard of avionics we offer under a turnkey agreement a fully system for being operated on a whole

world which is lacking lot of things.

Its fuselage made of Kevlar® and Carbon Fabrics with Epoxy resin for the Aerospace Industries provide, together with the EPP wing, a high level of ruggedized to this UAV.

Each part can be easily replaced for a new one in minutes improving the MTBF and therefore its reliability. Definitely you will purchase a system tested and made for working in extreme conditions.

As any requirement depends on its mission, you can select which payload your Shepherd needs up to a 800gr into the main deck and wing. Our customers are usually interested on extra battery for extended operations, Night vision sensors and FLIR® technology. If you have any enquire do not hesitate in ask about it.

The Shepherd is built to imitate the looks of a rapacious bird. This characteristic makes it an ingenious, unique and useful system for wild life control and surveillance applications.

This allows observation from sky going undetected on ground: nobody suspects of a bird flying-by. While in flight is very difficult to tell apart from a real bird.

It looks so real that the shepherd is also great for pest control in locations where birds are a problem: airports, ports, wind farms, etc. The birds recognise the Shepherd as a predator for them and leave the area. The Shepherd presents a solution effective against bird pest without the problems associated with falconry. It does not need to sleep, does not stop working breeding season, does not need to change feathers, etc.

When combined the fantastic and realistic looks with the Airelectronics' flight control system a very capable UAV appears: allowing very discreet over the hill survillance, it also can be applied to the automatition of pest control by allowing inexpert users to manage the flight of the platform, making the controlled zones free of bird pest.

Using a standard computer, the user can plan, fly and modify the UAV mission in real time in the easiest possible way thanks to the U-Pilot flight control system and the U-See ground station software. The operator doesn't need

any previous flight experience and it is not even necessary to have a manual joystick because the system can fly 100% in automatic mode: from the take-off to the landing. In case of a communications problem the plane will came back home and land safely.

UAV Shepherd

Due to the fact than the plane has been built using composites and EPP its weight is really low, so it is really easy to hand launch it and to land it: any operator can do it, even without any previous skill, and it will land on its fuselage without big damage in almost any terrain.

After long optimization tests done on the field the best engine-propeller relationship has been selected and special engine control law has been designed achiving the best possible endurance.

The brain for the plane is the Airelectronics' U-Pilot flight control system, which is embedded inside the plane's fuselage. Being based in FPGA technology, U-Pilot's configurability and flexibility is unsurpassed and the advanced sensor mixture using extended Kalman filtering assures an optimal attitude and navigation control.

It can be adapted to control any payload you want, and has camera control capabilities already built-in, including geo-reference of a camera image.

Engine data
Throttle 39%
Voltage
Amperage
Wattage
Graphs

Engine Data

Battery data

Max [mAh] 5000

Actual [mAh]

Percentage [%]

U-Pilot can fly the aircraft using waypoint navigation, even when the GPS signal has been lost by using dead-reckoning navigation. Can also orbit around a ground location and can fly directly towards a map clicked location.

Its control laws has been optimized for the control of the electric motor the UAV Shepherd uses, having automatic modes that take advantage of the energy present in the atmosphere: The plane has capability to climb taking advantage of the convective activity (thermal soaring). This way it gains flight time and extends its range. This gives almost unlimited loiter time over a forest fire.

It monitors the amount of energy that came from the batteries and uses the batteries up to the point it is bingo time.

Highlights

Thermal Soaring
Take advantage of the atmosphere energy

Fully autonomous

No human intervention required during flight

Multi-Payload

The plane can accomodate a great number of payloads

Affordable
Unlike other solutions, the prices are reasonable

Hull renovation
We will supply you a new hull free of charge if yours is damaged

Bat. monitoring
Real time battery monitoring
assures that you won't loose
the aircraft due to overuse

Real-Time Video Feed
Using a video transmitter you
can receive real-time the
video feed

Flight-Plan
Automatic flight plan following allows to complete unattended missions

geo-reference
The system can give
geo-referenced images

Camera

Possible Applications

Border control Survillance in terrestrial and maritime borders

Police Usage
Demonstration
control, anti-drug
operations

Bird Control Airports, ports, windfarms, etc.

Fire Fighting
Monitor Active
fires, avoid
reactivation of
controlled fires

Military
Forward observer,
over the hill recon
missions

UAV Shepherd

Flight control Specification

Flight control Attitude Estimation & control
GPS Positioning SBASGlobal coverage Differential navigationavailable on request
Interface with Payloads & Actuators PWM & GPIO outputs
Telemetry Data-Link Frequency 900MHz/1.4 Ghz/2.4GHz Power 1 W Range 100 km / 80km / 40 km baud rate 115200 bps
Air Data System Dynamic pressure sensor range 0 – 200 km/h Static pressure, low altitude option 0-2000 m Static pressure, high altitude option 0-4000 m
Cammera Control ProtocolsVISCA®, Controp & PWMOther protocols upon request Camera modesGeo-Pointed, Stable, Manual

Minimum Hardware for Control Computer

The recommended hards 13" with BootCamp and	
OS	_inux, Windows orMacOs X
Processor	Intel Core i5
RAM	2GB
Hard drive	5 free Gb
Video Card	OpenGL supported
Screen	at least 13"
Ports	1 RS-232 port
(nativ	e or through USB adaptor)

(native or through USB adaptor)
Plane Specification
Dimensions Length
Weights Empty Weight2,0 kg. Maximum Take-Off Weight2,8 kg.
Endurance 3000 mAh battery option30 min minimum 6000 mAh battery option50 min minimum 8000 mAh 4s battery option90 min minimum
Typical Crusing speed 50 km/h