

We offer a complete solution for the user that wish to introduce himself in the rotary wing UAV world.

Using a standard computer, the user can plan, fly and modify the UAV mission in real time in the easiest possible way thanks to the U-Pilot flight control system and the U-See ground station software.

The operator doesn't need any previous flight experience because the system can fly 100% in automatic mode: from the take-off to the landing. In case of a communications problem the aircraft will came back home and land safely.

The helicopter used is the Vario Benzine Trainer RC hellicopter conveniently adapted to become a full featured UAV without the customer having to worry for anything. It has a two strokes gasoline engine, giving a very good reliability and the capability to load up to 3,5kg of payload with an endurance of 25 min when using the standard fuel tanks.

The brain for the UAV is the Airelectronics' U-Pilot flight control system. Being based in FPGA technology, U-Pilot's configurability and flexibility is unsurpassed and the advanced sensor mixture using extended Kalman filtering assures an optimal attitude and navigation control. It can be adapted to control any payload you want, and has camera control capabilities already built-in, including georeference of a camera image.

U-Pilot can fly the aircraft using waypoint navigation, even when the GPS signal has been lost by using dead-reckoning navigation. It can also hover a ground location and can fly directly towards a map clicked location.

The attitude and navigation control has been optimized to control the rotary wing UAV with very smooth and controlled transitions, hovering and navigation.

Possible Applications

Border control
Survillance in
terrestrial and
maritime borders

Police Usage
Demonstration
control, anti-drug
operations

Agriculture
Status of crops,
Forest mass
control, study of
soil

Fire Fighting
Monitor Active
fires, avoid
reactivation of
controlled fires

Military
Forward observer,
over the hill recon
missions

Real-Time Video Feed

Using a video transmitter you can receive real-time the

Fully autonomous

No human intervention required during flight

Affordable

Unlike other solutions, the prices are reasonable

geo-reference

The system can give geo-referenced images

Multi-Payload

The plane can accomodate a great number of payloads

Flight-Plan

Automatic flight plan following allows to complete unattended missions

Flight control Specification

Flig	ht	control

Attitude Estimation & control	1000Hz rate
Flight-plan	Up to 200 way-points
Speed Control	Auto-throttle
Take-Off & Landing	Automatic

GPS Positioning

SBAS	Global coverage
Differential navigation	available on request

Interface with Payloads & Actuators

PWM & GPIO outputs	30
PWM rate (configurable)	Configurable
RS-232 ports	. 4 RS-232 compliant ports
RS-232 Rates	9600 – 115200 bps
External ADC channels	3 channel 12bit - 0-30 V
Main Voltage supply sup	ervisor

Telemetry

Data-Link Frequency	900MHz/1.4 Ghz/2.4GHz
Power	1 W
Range	100 km / 80km / 40 km
baud rate	115200 bps

Air Data System

Dynamic pressure sensor range 0 – 200 km/h
Static pressure, low altitude option 0-2000 \mbox{m}
Static pressure, high altitude option0-4000 m

Cammera Control

Protocols	VISCA®, Controp & PWM
Oth	er protocols upon request
Camera modesGe	eo-Pointed, Stable, Manual

Minimum Hardware for Control Computer

	hardware is the MacBook Pro p and Microsoft Windows 7.
Operative System	Linux, Windows
Processor	Intel Core i5
RAM	2GB
Hard drive	5 free Gb
Video Card	OpenGL supported
Screen	at least 13"
Ports	1 RS-232 port
	(native or through USB adaptor)

Aircraft Specification

Dimensions

Main Rotor	1800 mm
Length	1460 mm
Width	200 mm
Height	520 mm

Weights

Empty Weight	7,6	kg.
Maximum Take-Off Weight	11.0	ka.

Endurance

Standard Fuel Tank	25	min.
Full Fuel Tank	120	min.
Other fuel tanks are available to extent e	ndur	ance

